Skip to main content

Bruce Schneier Wants You to Make Software Better

https://spectrum.ieee.org/at-work/tech-careers/bruce-schneier-wants-you-to-make-software-better

Producing effective code means understanding more than just programming

Security technologist Bruce Schneier has a warning ““What you code affects the world now. Gone are the days when programmers could ignore the social context of what they code, when we could say, ‘The users will just figure it all out.’ Today, programs, apps, and algorithms affect society. Facebook’s choices influence democracy. How driverless cars will choose to avoid accidents will affect human lives.”

Schneier should know, because synthesizing and explaining the impact of technology is what he does. “I work at the intersection of security, technology, and people, mostly thinking about security and privacy policy…. I don’t have a single job,” says Schneier. “Instead, I do a portfolio of related things.”

This includes writing books (14 so far); essays and op-eds; his monthly-since-1998 newsletter and his daily-since-2004 blog; teaching cybersecurity policy at the Harvard Kennedy School; being a fellow at the Berkman Klein Center for Internet and Society at Harvard University; being chief of security architecture at Inrupt; speaking at conferences and events (unsurprisingly, he has done a TED talk); and now and then some security consulting.

“My latest book, Click Here to Kill Everybody [2018], is about the security of cyberphysical systems. Everything is turning into a computer—cars, appliances, toys, streetlamps, power plants—and these computers can affect the world in a direct physical manner. Computer security is now about life and property.”

Schneier started out in cryptography in the mid-1990s, becoming a public expert after he was laid off from a tech job at AT&T. “I started writing for computer magazines. I wrote cryptography articles for Dr. Dobb’s Journal. Then I sold my first book to Wiley—Applied Cryptography [1993]—which became a bestseller. The book became a 600-page business card, and I started doing cryptography consulting. From there, I generalized to computer security, then network security, then general security technology...and then to the economics and psychology, sociology, and now, public policy of security.”

Schneier does not want to be alone in this work, and encourages others to join him. “We need people who can assess the technologies in social context, how they could impact the real world—and what public policies should address this. To do that, you need to be able to synthesize across technology and policy, and explain this to both technologists and policymakers.” And this greater context needs to be factored in at all stages of the software life cycle, “We need social scientists on our software-development teams.”

Does this sound appealing? “Where you start out almost doesn’t matter. But look outside your silo, look at adjacent or complementary disciplines.” As an example, Schneier points to security economics. “I devote a class session on the economics of security. And another on the psychology of security. If you’re a security engineer and you don’t understand the economic considerations of the problem you’re trying to solve, you are going to get the incentives all wrong. And what you create might never get used.”

Becoming a good communicator is essential, stresses Schneier. “Explaining technology across interdisciplinary boundaries requires being able to write, speak, to animate a topic, to analogize and synthesize, to summarize and generalize. These are all critical skills. They’re not specific skills, but they are vitally important.”

This article appears in the May 2021 print issue as “Bruce Schneier.”

 

Comments

Popular posts from this blog

The Difference Between LEGO MINDSTORMS EV3 Home Edition (#31313) and LEGO MINDSTORMS Education EV3 (#45544)

http://robotsquare.com/2013/11/25/difference-between-ev3-home-edition-and-education-ev3/ This article covers the difference between the LEGO MINDSTORMS EV3 Home Edition and LEGO MINDSTORMS Education EV3 products. Other articles in the ‘difference between’ series: * The difference and compatibility between EV3 and NXT ( link ) * The difference between NXT Home Edition and NXT Education products ( link ) One robotics platform, two targets The LEGO MINDSTORMS EV3 robotics platform has been developed for two different target audiences. We have home users (children and hobbyists) and educational users (students and teachers). LEGO has designed a base set for each group, as well as several add on sets. There isn’t a clear line between home users and educational users, though. It’s fine to use the Education set at home, and it’s fine to use the Home Edition set at school. This article aims to clarify the differences between the two product lines so you can decide which

Let’s ban PowerPoint in lectures – it makes students more stupid and professors more boring

https://theconversation.com/lets-ban-powerpoint-in-lectures-it-makes-students-more-stupid-and-professors-more-boring-36183 Reading bullet points off a screen doesn't teach anyone anything. Author Bent Meier Sørensen Professor in Philosophy and Business at Copenhagen Business School Disclosure Statement Bent Meier Sørensen does not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article, and has no relevant affiliations. The Conversation is funded by CSIRO, Melbourne, Monash, RMIT, UTS, UWA, ACU, ANU, ASB, Baker IDI, Canberra, CDU, Curtin, Deakin, ECU, Flinders, Griffith, the Harry Perkins Institute, JCU, La Trobe, Massey, Murdoch, Newcastle, UQ, QUT, SAHMRI, Swinburne, Sydney, UNDA, UNE, UniSA, UNSW, USC, USQ, UTAS, UWS, VU and Wollongong.

Logic Analyzer with STM32 Boards

https://sysprogs.com/w/how-we-turned-8-popular-stm32-boards-into-powerful-logic-analyzers/ How We Turned 8 Popular STM32 Boards into Powerful Logic Analyzers March 23, 2017 Ivan Shcherbakov The idea of making a “soft logic analyzer” that will run on top of popular prototyping boards has been crossing my mind since we first got acquainted with the STM32 Discovery and Nucleo boards. The STM32 GPIO is blazingly fast and the built-in DMA controller looks powerful enough to handle high bandwidths. So having that in mind, we spent several months perfecting both software and firmware side and here is what we got in the end. Capturing the signals The main challenge when using a microcontroller like STM32 as a core of a logic analyzer is dealing with sampling irregularities. Unlike FPGA-based analyzers, the microcontroller has to share the same resources to load instructions from memory, read/write the program state and capture the external inputs from the G