Skip to main content

The Importance of Recreational Math

http://www.nytimes.com/2015/10/12/opinion/the-importance-of-recreational-math.html

Baltimore — IN 1975, a San Diego woman named Marjorie Rice read in her son’s Scientific American magazine that there were only eight known pentagonal shapes that could entirely tile, or tessellate, a plane. Despite having had no math beyond high school, she resolved to find another. By 1977, she’d discovered not just one but four new tessellations — a result noteworthy enough to be published the following year in a mathematics journal.

The article that turned Ms. Rice into an amateur researcher was by the legendary polymath Martin Gardner. His “Mathematical Games” series, which ran in Scientific American for more than 25 years, introduced millions worldwide to the joys of recreational mathematics. I read him in Mumbai as an undergraduate, and even dug up his original 1956 column on “hexaflexagons” (folded paper hexagons that can be flexed to reveal different flowerlike faces) to construct some myself.
“Recreational math” might sound like an oxymoron to some, but the term can broadly include such immensely popular puzzles as Sudoku and KenKen, in addition to various games and brain teasers. The qualifying characteristics are that no advanced mathematical knowledge like calculus be required, and the activity engage enough of the same logical and deductive skills used in mathematics.

Unlike Sudoku, which always has the same format and gets easier with practice, the disparate puzzles that Mr. Gardner favored required different, inventive techniques to crack. The solution in such puzzles usually pops up in its entirety, through a flash of insight, rather than emerging steadily via step-by-step deduction as in Sudoku. An example: How can you identify a single counterfeit penny, slightly lighter than the rest, from a group of nine, in only two weighings?

Mr. Gardner’s great genius lay in using such basic puzzles to lure readers into extensions requiring pattern recognition and generalization, where they were doing real math. For instance, once you solve the nine coin puzzle above, you should be able to figure it out for 27 coins, or 81, or any power of three, in fact. This is how math works, how recreational questions can quickly lead to research problems and striking, unexpected discoveries.

A famous illustration of this was a riddle posed by the citizens of Konigsberg, Germany, on whether there was a loop through their town traversing each of its seven bridges only once. In solving the problem, the mathematician Leonhard Euler abstracted the city map by representing each land mass by a node and each bridge by a line segment. Not only did his method generalize to any number of bridges, but it also laid the foundation for graph theory, a subject essential to web searches and other applications.

With the diversity of entertainment choices available nowadays, Mr. Gardner’s name may no longer ring a bell. The few students in my current batch who say they still do mathematical puzzles seem partial to a website called Project Euler, whose computational problems require not just mathematical insight but also programming skill.

This reflects a sea change in mathematics itself, where computationally intense fields have been gaining increasing prominence in the past few decades. Also, Sudoku-type puzzles, so addictive and easily generated by computers, have squeezed out one-of-a-kind “insight” puzzles, which are much harder to design — and solve. Yet Mr. Gardner’s work lives on, through websites that render it in the visual and animated forms favored by today’s audiences, through a constellation of his books that continue to sell, and through biannual “Gathering 4 Gardner” recreational math conferences.

Comments

Popular posts from this blog

The Difference Between LEGO MINDSTORMS EV3 Home Edition (#31313) and LEGO MINDSTORMS Education EV3 (#45544)

http://robotsquare.com/2013/11/25/difference-between-ev3-home-edition-and-education-ev3/ This article covers the difference between the LEGO MINDSTORMS EV3 Home Edition and LEGO MINDSTORMS Education EV3 products. Other articles in the ‘difference between’ series: * The difference and compatibility between EV3 and NXT ( link ) * The difference between NXT Home Edition and NXT Education products ( link ) One robotics platform, two targets The LEGO MINDSTORMS EV3 robotics platform has been developed for two different target audiences. We have home users (children and hobbyists) and educational users (students and teachers). LEGO has designed a base set for each group, as well as several add on sets. There isn’t a clear line between home users and educational users, though. It’s fine to use the Education set at home, and it’s fine to use the Home Edition set at school. This article aims to clarify the differences between the two product lines so you can decide which...

Let’s ban PowerPoint in lectures – it makes students more stupid and professors more boring

https://theconversation.com/lets-ban-powerpoint-in-lectures-it-makes-students-more-stupid-and-professors-more-boring-36183 Reading bullet points off a screen doesn't teach anyone anything. Author Bent Meier Sørensen Professor in Philosophy and Business at Copenhagen Business School Disclosure Statement Bent Meier Sørensen does not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article, and has no relevant affiliations. The Conversation is funded by CSIRO, Melbourne, Monash, RMIT, UTS, UWA, ACU, ANU, ASB, Baker IDI, Canberra, CDU, Curtin, Deakin, ECU, Flinders, Griffith, the Harry Perkins Institute, JCU, La Trobe, Massey, Murdoch, Newcastle, UQ, QUT, SAHMRI, Swinburne, Sydney, UNDA, UNE, UniSA, UNSW, USC, USQ, UTAS, UWS, VU and Wollongong. ...

Logic Analyzer with STM32 Boards

https://sysprogs.com/w/how-we-turned-8-popular-stm32-boards-into-powerful-logic-analyzers/ How We Turned 8 Popular STM32 Boards into Powerful Logic Analyzers March 23, 2017 Ivan Shcherbakov The idea of making a “soft logic analyzer” that will run on top of popular prototyping boards has been crossing my mind since we first got acquainted with the STM32 Discovery and Nucleo boards. The STM32 GPIO is blazingly fast and the built-in DMA controller looks powerful enough to handle high bandwidths. So having that in mind, we spent several months perfecting both software and firmware side and here is what we got in the end. Capturing the signals The main challenge when using a microcontroller like STM32 as a core of a logic analyzer is dealing with sampling irregularities. Unlike FPGA-based analyzers, the microcontroller has to share the same resources to load instructions from memory, read/write th...