Skip to main content

Fluid Annotation: An Exploratory Machine Learning–Powered Interface for Faster Image Annotation

 https://ai.googleblog.com/2018/10/fluid-annotation-exploratory-machine.html

 

 
The performance of modern deep learning–based computer vision models, such as those implemented by the TensorFlow Object Detection API, depends on the availability of increasingly large, labeled training datasets, such as Open Images. However, obtaining high-quality training data is quickly becoming a major bottleneck in computer vision. This is especially the case for pixel-wise prediction tasks such as semantic segmentation, used in applications such as autonomous driving, robotics, and image search. Indeed, traditional manual labeling tools require an annotator to carefully click on the boundaries to outline each object in the image, which is tedious: labeling a single image in the COCO+Stuff dataset takes 19 minutes, while labeling the whole dataset would take over 53k hours!
Example of image in the COCO dataset (left) and its pixel-wise semantic labeling (right). Image credit: Florida Memory, original image.
In “Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation”, to be presented at the Brave New Ideas track of the 2018 ACM Multimedia Conference, we explore a machine learning–powered interface for annotating the class label and outline of every object and background region in an image, accelerating the creation of labeled datasets by a factor of 3x. Fluid Annotation starts from the output of a strong semantic segmentation model, which a human annotator can modify through machine-assisted edit operations using a natural user interface. Our interface empowers annotators to choose what to correct and in which order, allowing them to effectively focus their efforts on what the machine does not already know.

 

 

 

 

Comments

Popular posts from this blog

The Difference Between LEGO MINDSTORMS EV3 Home Edition (#31313) and LEGO MINDSTORMS Education EV3 (#45544)

http://robotsquare.com/2013/11/25/difference-between-ev3-home-edition-and-education-ev3/ This article covers the difference between the LEGO MINDSTORMS EV3 Home Edition and LEGO MINDSTORMS Education EV3 products. Other articles in the ‘difference between’ series: * The difference and compatibility between EV3 and NXT ( link ) * The difference between NXT Home Edition and NXT Education products ( link ) One robotics platform, two targets The LEGO MINDSTORMS EV3 robotics platform has been developed for two different target audiences. We have home users (children and hobbyists) and educational users (students and teachers). LEGO has designed a base set for each group, as well as several add on sets. There isn’t a clear line between home users and educational users, though. It’s fine to use the Education set at home, and it’s fine to use the Home Edition set at school. This article aims to clarify the differences between the two product lines so you can decide which

Let’s ban PowerPoint in lectures – it makes students more stupid and professors more boring

https://theconversation.com/lets-ban-powerpoint-in-lectures-it-makes-students-more-stupid-and-professors-more-boring-36183 Reading bullet points off a screen doesn't teach anyone anything. Author Bent Meier Sørensen Professor in Philosophy and Business at Copenhagen Business School Disclosure Statement Bent Meier Sørensen does not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article, and has no relevant affiliations. The Conversation is funded by CSIRO, Melbourne, Monash, RMIT, UTS, UWA, ACU, ANU, ASB, Baker IDI, Canberra, CDU, Curtin, Deakin, ECU, Flinders, Griffith, the Harry Perkins Institute, JCU, La Trobe, Massey, Murdoch, Newcastle, UQ, QUT, SAHMRI, Swinburne, Sydney, UNDA, UNE, UniSA, UNSW, USC, USQ, UTAS, UWS, VU and Wollongong.

Logic Analyzer with STM32 Boards

https://sysprogs.com/w/how-we-turned-8-popular-stm32-boards-into-powerful-logic-analyzers/ How We Turned 8 Popular STM32 Boards into Powerful Logic Analyzers March 23, 2017 Ivan Shcherbakov The idea of making a “soft logic analyzer” that will run on top of popular prototyping boards has been crossing my mind since we first got acquainted with the STM32 Discovery and Nucleo boards. The STM32 GPIO is blazingly fast and the built-in DMA controller looks powerful enough to handle high bandwidths. So having that in mind, we spent several months perfecting both software and firmware side and here is what we got in the end. Capturing the signals The main challenge when using a microcontroller like STM32 as a core of a logic analyzer is dealing with sampling irregularities. Unlike FPGA-based analyzers, the microcontroller has to share the same resources to load instructions from memory, read/write the program state and capture the external inputs from the G